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(Received October 5,1981 ; infinal form November 1981) 

The equilibrium equation of the classical theory ofjoints is not, in general, soluble in closed form 
for variable glue-line thickness. It is shown, however, that analytical results describing the 
influence of thickness variations can be obtained by two methods : a perturbation method and an 
inverse method. Detailed calculations are given for thickness variations which are most 
pronounced at one end of the joint and which can be characterized by two parameters, namely an 
amplitude and a decay length. Of the two methods, the perturbation method is the more flexible in 
application, but its accuracy relies on the amplitude being sufficiently small, while the inverse 
method can lead to an exact solution which can be used to assess the range ofaccuracy of the two- 
term perturbation expansion. Certain practical implications of the results obtained are discussed. 

INTRODUCTION 

The classical theory of bonded overlap joints treats the adherends as one- 
dimensional continua and thus reduces the equations of equilibrium to 
ordinary differential equations.' In a comprehensive study of bonded joints, 
Hart-Smith2 has highlighted the usefulness of this theory in providing basic 
insights as well as leading to practical design charts. More r e~en t ly ,~  he has 
discussed briefly the influence of variations in glue-line thickness, using 
numerical results obtained for two particular cases of thickness variation in 
the basic configuration of the double overlap joint. While these numerical 
results give an intuitive indication of what can be expected in other cases, it 
would clearly be desirable to have explicit formulae for assessing the influence 
of thickness variations on the distribution of adhesive shear stress. The aim of 
this note is to show how such formulae can be derived. Two methods will be 
used : a perturbation method and an inverse method. 
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94 1.. R. F. ROSE 

2F (a1 

FIGURE 1 
for deriving Eq. (6). 

(a) The double overlap joint configuration being considered. (b) Free-body diagram 

The overlap joint has received renewed interest in the context of cracked 
plates repaired by bonded reinforcements. It has been shown4 that an upper 
bound for the crack extension force in the repaired plate can be derived by 
considering the work done by the applied force in the overlap joint 
configuration of Figure l(a). We shall not elaborate further on this connection, 
which is discussed in detail except to note that the identifying subscripts 
and the loading configuration chosen in Figure l(a) follow from that repair 
context. Thus E,, E ,  denote the Young’s moduli, 2t,, t,  the thicknesses of the 
inner and outer adherends respectively (the plate and the reinforcements in the 
repair context), while GA, t ,  denote the shear modulus and thickness of each 
adhesive layer. The methods which will be described, however, can readily be 
applied to other configurations. 

The principal feature of the classical theory ofjoints is the exponential decay 
of the adhesive shear stress from the ends of the joint. Consequently one can 
identify a load-transfer length at each end and the joint strength becomes 
practically independent of the length of overlap when the overlap is longer than 
the sum of these transfer lengths, provided that the joint strength is determined 
by failure of the adhesive, which we shall assume to be the case throughout the 
following analysis. Since the aim of this analysis is to show how the classical 
results are altered by a variable glue-line thickness, we shall assume that the 
overlap is sufficiently long for the interaction between the load-transfer 
regions at the ends to be negligible, so that we can focus attention on the load- 
transfer characteristics at only one end of a joint, as in Figure l(a). It will also 
be assumed that the adhesive as well as the adherends deform elastically, so 
that the stress distributions for the more conventional loading configuration, 
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LOAD TRANSFER IN DOUBLE OVERLAP JOINTS 95 

in which no external force is applied to the inner adherend at x = 0, could be 
derived from the present results by linear superposition; in fact, it can be 
readily verified that the adhesive shear stress near the end x = 0 is the same for 
these two cases, so that the present analysis gives directly the amount of load 
which can be transferred at that end by an elastic-brittle adhesive. 

THE DIFFERENTIAL EQUATION FOR VARIABLE GLUE-LINE 
THICK N ESS 

The classical theory of bonded joints is based on the following assumptions : 
i) Each adherend is treated as a one-dimensional continuum whose 

deformation is specified by a longitudinal displacement u and a longitudinal 
normal stress CT. The stress-displacement relations are 

cp(x)  = EPub(x)? CTR(x) = ERuk(x)y (1) 

where the dash denotes a differentiation with respect to x. 

given by 
ii) Each adhesive layer acts as a shear spring with the adhesive shear stress zA 

zA(x) = { GA/tA} { UP(X) - u R ( x > } .  (2) 

In the classical theory, the glue-line thickness is assumed to be constant. To 
retain an easy correspondence with that theory, we shall write the actual 
thickness tA(X) in the form 

tA(X) = tAh(X), (3) 

so that tA on the right hand side (and hereafter) is again a constant, which can 
be considered to be the nominal thickness, while h(x) describes the normalized 
thickness variation. Thus for our case Eq. (2) can be written as follows, 

h(x)zA(x) = (GA/tA) { - uR(x)). (4) 
We note that this form of the equation could equally be used to describe a 
variation in the adhesive shear modulus, or, more generally, to describe a 
variation in the ratio of shear modulus to thickness of the adhesive layer. 

iii) The shear tractions exerted by the adhesive can be replaced by an 
equivalent body force distributed uniformly across the thickness of each 
adherend, leading to the following differentia1 equations of equilibrium : 

tpCTL(X) = - tROk(X) = zA(x)- ( 5 )  

The traditional approach' now is to derive a differential equation for zA, but 
it is more convenient in the present context to derive one for cp instead. To that 
end, consider the free-body diagram shown in Figure l(b). As there is no 
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96 L. R. F. ROSE 

external force applied at x .+ 00, the condition of equilibrium leads to the 
relation 

tpap(x) + t,aR(x) = 0. (6) 

Now, by differentiating both sides of Eq. (4) with respect to x, using (5 )  to 
replace zA by c$ and using Eqs. (l), (6) to  express { uk(x) - uk(x)} in terms of ap, 
we obtain the following basic equation, 

{h(x)4(x))’ - BZ0P(X) = 0, (7) 

where 

b2 = (GA/tA) {(EPtP)-l $-(ERtR)-l}* 

This equation must now be solved subject to the boundary conditions 

tpa,(x = 0) = --F, 

ap(x -+ a) = 0. 

2F is the applied load per unit width, the width being measured perpendicular 
to the cross-section shown in Figure l(a). 

Despite its simple appearance, Eq. (7) is not in general soluble in closed 
form. To proceed we shall first use a perturbation method6 and, secondly, an 
inverse method in which ap(x) is specified and the corresponding h(x) is then 
determined-a simple but effective device which can profitably be used in 
many  context^.^ 

PERTURBATION METHOD 

Let 

h(x) = 1 + E f ( X ) ,  (1 1) 

where E(<< 1) is the small perturbation parameter. In principle,f(x) can be any 
arbitrary function having a bounded second derivative, but it will prove to be 
analytically convenient to choose 

f(x) = & exp( - KX), K > 0. (12) 

This choice gives a thickness variation which is most pronounced at x = 0 and 
which has a characteristic length of l / ~ .  With the minus sign in Eq. (12) we 
would have a constriction (or pinch off3) of the adhesive layer, which could 
arise in practice from a beading of the inner adherend at its end x = 0. It is 
intuitively evident that such beading will increase the maximum adhesive 
shear stress for a given load, while an increase in thickness (corresponding to 
the choice of the plus sign in Eq. (12)) would decrease the maximum shear 
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LOAD TRANSFER IN DOUBLE OVERLAP JOINTS 97 

stress. The object of the analysis is to derive explicit quantitative estimates for 
these expectations. 

In accordance with the standard perturbation procedure we can now write 

ap(x) = @(x) + Ea:(X) + 0(E2), (13) 

where &a: represents the first-order correction to the zero-order solution a:, 
and O ( 2 )  stands for terms of order E’ or smaller. Since we are dealing with a 
linear problem, the other dependent variables admit similar asymptotic 
representations for small E, in particular 

TA(X) = 71(x) + &T:(X) + o(&*). (14) 

The zero-order approximation 

By setting E = 0 in (11) we recover the equation of the classical theory 
(corresponding to constant glue-line thickness tA) for the zero-order 
approximation : 

(a:>ll-pa; = 0, (15) 

(16) 

a:(x) = -(F/tp) exp(-j?x). (17) 

subject to the boundary conditions 

CO:(X = 0) = - F ,  C$(X -+ a) = 0. 

The appropriate solution is readily found to be 

This shows the exponential pick-up of load at the ends of a joint, according to 
the classical theory, the load-transfer length being 1/P. 

From Eq. (5) the corresponding adhesive shear stress is 

T ~ ( x )  = FP exp( - Px). (18) 

Thus, for the case of uniform glue-line thickness, the maximum applied load 
F i  which can be sustained by an elastic-brittle adhesive with a failure stress TI; 
is given by 

The first-order approximation 

Substituting Eqs. (1 1) and (13) in Eq. (7) and retaining only the terms of order E 

we derive the following equation for the first order correction : 

(a# - pa: = - {f(x) (a:)’)’, (20) 
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98 L. R. F. ROSE 

subject to the boundary conditions 

aj(x = 0) = .j(x + co) = 0. (21) 
A particular integral of this equation can be found in a convenient analytical 

form if f ( x )  is the exponential function in Eq. (12) with K # p. Then one can 
readily verify that the appropriate solution is 

c$(x) = T(F/~,) ( B ( ~ ? + K ) / K ( ~ ~ + K ) } ( I  -e-"")e-@. (22) 
The corresponding T: is obtained by differentiation, and, collecting the 

results, we find that a glue-line thickness 

tA(1  f&e-KX), & << l , K  > 0, (23) 
leads to the following adhesive shear stress : 

Discussion 

With the choice of the minus sign in Eq. (23), which corresponds to a 
constriction of the adhesive layer, the maximum value of zA occurs at x = 0. 
For an elastic-brittle adhesive with a failure stress TL, the applied load at which 
failure begins is reduced from the value in Eq. (1 9) by a factor of 

(25)  
However, this initial failure does not spread catastrophically : an increasing 
load is required to propagate the de-bond. In fact, with the assumptions of the 
present model, the applied load can be increased up to the value in Eq. (19), 
albeit with an increasingly long de-bond. This is because a debond of length d 
merely shifts the interval over which load transfer occurs from 0 B x < 00 to 
d < x < co, so that effectively the minimum glue-line thickness has been 
increased from 1 --E to 

1 -ce-Kd,  

while the characteristic decay length K is unchanged. By the preceding analysis 
the failure load has therefore been increased relative to the initial value for no 
debond. Thus a bondedjoint may be said to be damage tolerant with respect to 
constrictions in the adhesive layer because its strength is not reduced, 
provided that the overlap is sufficiently long. However, the work done by the 
applied load is increased if debonding occurs, and this is important in the 
repair because it implies that the crack extension force is increased. 

With the choice of the plus sign in Eq. (23), the maximum value of zA is no 

1 - &(p -k K ) / ( 2 / j  + K )  -k o(E2). 
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LOAD TRANSFER IN DOUBLE OVERLAP JOINTS 99 

longer necessarily at x = 0. The equation T;(X) = 0 derived from Eq. (24) 
admits a solution corresponding to a maximum in the range 0 < x < co if E 

> P/(P + K ) .  This imposes a restriction on the flaring of the adhesive layers : to 
ensure that the maximum zA occurs at x = 0 we must require that 

K / f i  < (1 -&)/&. 

Then, the applied load at which failure begins is increased from the value in Eq. 
(19) by a factor of 

1 + E ( P  + K ) / ( 2 P  + ic) + O(E2). (27) 

However, an initial failure will now spread catastrophically if the load is 
maintained. 

The load-transfer length may be defined by the ratio -zA(0)/za(O), and it is 
given by 

showing that it is respectively increased or decreased by a flaring or a 
constriction, relative to the value 1/fi which it wpuld have for constant 
thickness, 

There are two important limitations of the present analysis which must be 
kept in mind when applying the results derived above or further results 
obtained by the same procedure. First, the classical theory involves a physical 
inconsistency in predicting a non-zero value for the adhesive shear stress at the 
free end x = 0. This raises a problem of interpretation.’ Detailed two- 
dimensional analyses have shown that the results of the one-dimensional 
theory are accurate except within a distance from the end x = 0 approximately 
equal to the thickness of the adhesive layer. Thus, the one-dimensional theory 
should be adequate provided that the characteristic lengths involved, namely 
1/P and 1 / ~ ,  are much larger than the nominal adhesive thickness t A ,  which is 
usually the case in practice. Secondly, the accuracy of a perturbation 
expansion relies on the parameter E being sufficiently small. To assess the range 
of E for which the two-term expansion in Eq. (24) yields sufficiently accurate 
results for practical purposes, we shall later compare these results with those of 
an exact solution derived in the following section. 

INVERSE METHOD 

One can derive an exact solution of Eq. (7) by specifying op(x) and solving Eq. 
(7) for h(x). For this approach to be useful, the resulting glue-line thickness 
tAh(x) must be physically realisable, i.e. h(x) must be positive and 8( 1) for all x. 
Further, for our purposes, h(x) should display a constriction or flaring near 
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100 L. R. F. ROSE 

x = 0 and it should decay to a constant (non-zero) value for x + co. 
Accordingly, let us choose +(x) in the form 

.P(X) = - (F/tP) exp( - Bx)s(x),  (29) 

so that we can recover the classical case of constant glue-line thickness by 
specifying g(x)  = 1, c$ Eq. (17). To satisfy Eq. (9) we must impose the boundary 
condition 

g(x = 0) = 1. (30) 
Integrating Eq. (7) we obtain 

r x  
{e-B”g(x)}’h(x) = 8’ e-B‘g(t) dt + C, Jo 

where the constant of integration C is determined by the observation that the 
left hand side decays to zero when x + co because of the exponential term. 
Thus Eq. (31) leads to 

h(x) = - ~ p ~ / / ( e - B x g ( x ) ) ~ ~  Ixm e-B‘g(t) dt .  (32) 

At this stage one could experiment numerically with various specifications 
for g(x).  An analytically convenient choice, which satisfies Eq. (30), proves to be 

g(x)  = (1 + k x ) - ’ ,  k > 0, (33) 

(34) 

(35) 

for which the adhesive shear stress derived from Eqs. (29) and (5) is 

T*(x) = F{k + p(1+ k x ) }  (1 + kx)-’ e-8”, 

h(x) = p’(1 +kx)’ {k+P( l  +kx)}-’eBxr(x) ,  

and the corresponding thickness variation is given by 

with 

Z(x) = ( 1  +kt)-’e-B‘ d t .  (36) Ix* 
This h(x) meets the consistency conditions h(x) > 0 for all x and h(x + co) + 1, 
since 

I(x + co) = e-B”{(pkx)- ’+O(x-’ ) } .  (37) 

Z ( X  +O) = I,-x++(/?+k)x’+O(x3), (38) 

To study the form of h(x) near x = 0 we first note that 

where 
I, = k-’eS/kE1(i?/k) (39) 
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LOAD TRANSFER IN DOUBLE OVERLAP JOINTS 101 

and E l  denotes the exponential integral, a tabulated function.8 Thus Eq. (35) 
leads to 

h(x -? 0) = h(0) + h'(0)x + S(X2), (40) 
with 

Discuss ion 

The choice of g(x )  in Eq. (33) leads to a constriction in the adhesive layer, the 
minimum thickness being given by tAh(0), as compared with tA(l -6) in the 
perturbation method. The characteristic length of this constriction is given by 

{ 1 - h(O))/h'(O), (43) 
which corresponds to the length l/lc in the perturbation method. With the 
present method, the minimum thickness can be made arbitrarily small, as 
indicated by the values of h(0) in Table I, so that one can assess the influence of 
quite pronounced constrictions for which one would not expect the two-term 
perturbation expansion to yield accurate results. However, the perturbation 
method is more flexible relative to the form of thickness variation which can be 
studied. 

To compare the two methods, consider first the case fl/k = 10 for which 
h(0) = 0.832 and h'(0) = 0.0148 from Table I. The corresponding values of the 
parameters used in the perturbation method are E = 0.168 and IC = 0.083fl. 
Then the exact value of zA(0) from Eq. (34) is 

TABLE I 

Numerical values for Eq. (40) 

0.1 2.014 0.018 0.217 
0.5 0.923 0.154 0.333 

1 0.596 0.298 0.245 
2 0.361 0.482 0.136 
5 0.170 0.710 0.042 
10 0.092 0.832 0.014 
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102 L. R.  F. ROSE 

while the two-term expansion in Eq. (24) gives 

ZA(0) = FB{ 1 + 4 B  + 4/(V + K)), (45) 
= 1.087 FB, 

i.e. the two results differ by only 1.3%. The same calculations repeated for the 
cases P/k  = 5 and 2, for which E = 0.29 and 0.52 and ~ / f l  = 0.145 and 0.263 
respectively, show a difference of 4% and 14% respectively. Thus we conclude 
that the. perturbation expansion can be expected to give sufficiently accurate 
results for practical purposes (i.e. with an error no worse than 5%) for relative 
thickness variations up to approximately one quarter of the nominal 
thickness. 

In the preceding comparison, the thickness variations have been described 
by two parameters, namely their amplitude, which gives the maximum relative 
thickness variation, and a characteristic decay length, which is determined 
from the slope at the point of maximum thickness variation. In terms of this 
two-parameter characterization, the results obtained by the inverse method 
can be applied to estimate the influence of constrictions without limitations on 
the amplitude of the constriction. Thus, if we define the load-transfer length as 
the ratio - ~ ~ ( 0 ) / & ( 0 ) ,  we derive the following formula for this transfer length 
from Eq. (34) : 

transfer length = (1 + k / p ) / { p  + 2 4  1 + k /B) } .  (46) 

Eq. (46) reduces to the classical value 1/p when k / p  + 0, and it agrees with Eq. 
(28) for small E.  However, unlike Eq. (28), Eq. (46) is not restricted to small 
constrictions. Similarly Eq. (44) gives an estimate of the maximum adhesive 
shear stress which is not restricted to small constrictions. 

CONCLUSION 

The influence of variations in glue-line thickness has been studied by two 
methods. The first, a perturbation method, is easy to apply and flexible with 
respect to the form of thickness variation which can be studied, but it is an 
asymptotic method which cannot be expected to be accurate unless the 
amplitude of variation is sufficiently small. A numerical comparison with the 
results of an exact solution obtained by an inverse method suggests that the 
two-term perturbation expansions of the type given in Eqs (24,25,27,28,45) 
should be sufficiently accurate in practice for thickness variations up to one 
quarter of the nominal thickness. 

If the thickness variation is prescribed, the basic equation, Eq. (7), cannot in 
general be solved in closed form. However, using an inverse method in which 
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LOAD TRANSFER IN DOUBLE OVERLAP JOINTS 103 

the stress distribution is prescribed, one can derive a closed-form expression 
for the corresponding thickness variation. This expression includes an integral 
which cannot be reduced to elementary functions, but one can derive 
analytically the amplitude and the decay length of the thickness variation. The 
results obtained by this inverse method, for example Eqs (34, 44, 46), are not 
restricted to small amplitudes. Furthermore, the present one-dimensional 
results can give an indication of the effects of thickness variations in more 
general contexts, for example where a two-dimensional analysis would strictly 
be required. 
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